sttp Documentation
Release 1.0

Adam Warski

Oct 17,2019






Getting started

1 Quickstart

L1 Using sbt . . o o o o e e e e e e e e e e e e
1.2 USing AMMONIE . . . . o v v v it e e e e e e e e e e e e e e e e e e e e e e e e e e
1.3 Imports . . . o o o e e e e e e e e

2 Goals of the project
2.1 Non-goalsofthe project . . . . . . . . . . . e
2.2 How is sttp different from other libraries? . . . . . . . . . . .. ... o

3 Community

4 Usage examples

4.1 POST a form using the synchronous backend . . . . . . ... ... ... ... ... . .......
4.2 GET and parse JSON using the akka-http backend and json4s . . . . . ... ... ... .......
4.3  Test an endpoint requiring multiple parameters . . . . . . . . . . ... oL e e e e

5 HTTP Constants

6 Request definition basics

6.1  Sendingarequest. . . . . . . . L e e e e e e e e e e e e e e e e

6.2 Startin@ reqUESES . . . . . . e e e e e e e e e e e e e e e e e e e e e

6.3 Debugging requests . . . . . ... e e e e e
7 URIs

7.1 URIinterpolator . . . . . . . . . . . e e e e e

7.2 Optional values . . . . . . . . o L e e e e e e e e

7.3 Maps and SEQUENCES . . . . v v v vt e e e e e e e e e e e e e e e e e e e e e e e e e

T4 Special Cases . . . . v . e e e e e e e e e e e e e e e e e e e e

7.5 Allfeatures combined . . . . . . . ...
8 Headers

8.1 Commonheaders . . . . . . . . .. e e
9 Cookies

9.1  Cookies from responses . . . .« . v v v v v it e e e e e e e e e e e e

10 Authentication

A~ W W W

W W

17
17
18
18
19
19

21
21

23
23

25




11

12

13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

Setting the request body

1.1 Textdata . . . . . o o e e e e e e e e
11.2 Binary data . . . . . . . . o e e e e e e e e e e e e
11.3 Uploadingfiles . . . . . . . . . . L L e
11.4 Formdata. . . . . . . . . L e e e e e e e e
11.5 Custom body serializers . . . . . . . . . . L e e

Multipart requests
12.1 Customising part meta-data . . . . . . . .. L. L e e e e

Streaming
The type of request definitions

Responses

15.1 Responsecode . . . . . . . . o i e e e e
15.2 Responseheaders. . . . . . . . . . . e e e e e e e
15.3 Obtaining theresponse body . . . . . . . . . . e e e

Response body specification

16.1 Basic response specifications . . . . . . . . .. e e e e e e e e e e e
16.2 Handling non 2XX reSPONSES . . . . v v v v v v v et e e e e e e e e e e e e e e e e
16.3 Custom body deserializers . . . . . . . . . . . e e e e e e e e e e e e
164 Streaming . . . . . . . . o e e e e e e e e e e e

Supported backends
Starting & cleaning up
HttpURLConnection backend

akka-http backend
20.1 Testing . . . . o o e e e e e e e e e e e e e e e e

async-http-client backend
21.1 Streaming using Monix . . . . . . . ... e
21.2 Streamingusing fS2 . . . . . . L L e e

OkHttp backend
Http4s backend
brave backend
Prometheus backend

Fetch backend
20.1 NOAE.JS .« . v o i e e e e e e e e e e e e e e e
262 Streaming . . . . . . o it e e e e e e e e e e e e e e e e e e e e e e e

Custom backends, logging, metrics

27.1 Requesttag@ing . . . . . v v i i e e e e e e e e e e e e e e e e e e e e
27.2 Backend wrappers and redirects . . . . . . . ... L. oL
27.3 Example logging backend wrapper . . . . . . . ... L. e
27.4 Example metrics backend wrapper . . . . . . .. L. L o e e
27.5 Example retrying backend wrapper . . . . . ... ..o e e e e e e e e e e e
27.6 Examplenew backend . . . . . . . . .. e e e e

27
27
27
28
28
28

29
30

31

33

35
35
35
36

37
37
38
38
38

41

43

45

47
48

49
50
51

53

55

57

59

61
61
62




28

29

30

31

32

33

34

35

Testing

28.1 Creatingastubbackend . . . . . . . . . . . e e
28.2 Specifyingbehavior . . . . . ... e e
28.3 Simulating eXCeptions . . . . . . . ... .o e e e e e e e
28.4 Adjusting the response body type . . . . . . .. L. L e
28.5 Example: returning JSON . . . . . . L L e
28.6 Example: returning afile . . . . . . . . L L e e e e e e
28.7 Delegating to another backend . . . . . . . . ... L

Timeouts
SSL
Proxy support

Redirects
32.1 Redirecting POST requests . . . . . . . o o v i it e e e e e e e e e e e e e e e

JSON

33,1 CICE . v v v v o e e e e e e e e e
332 JSONAS . .. e e
333 SPIAY-JSOM . v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
334 play-Json . ..o e e e e e e e e e e e

Other Scala HTTP clients

Credits

69
69
69
71
71
72
72
72

75

77

79

81
81

83
83
84
84
85

87

89







sttp Documentation, Release 1.0

Welcome!

sttp is an open-source library which provides a clean, programmer-friendly API to define HTTP requests and execute
them using one of the wrapped backends, such as akka-http, async-http-client, http4s or OkHttp.

Here’s a very quick example of sttp in action:

import com.softwaremill.sttp._

val sort: Option[String] = None
val query = "http language:scala"

// the ‘query’ parameter is automatically url-encoded

// ‘sort’ 1is removed, as the value 1is not defined

val request = sttp.get (uri"https://api.github.com/search/repositories?g=$query&sort=
—Ssort™)

implicit wval backend = HttpURLConnectionBackend ()
val response = request.send()

// response.header(...): Option[String]
println (response.header ("Content-Length"))

// response.unsafeBody: by default read into a String
println (response.unsafeBody)

For more examples, see the usage examples section. Or explore the features in detail:

Getting started 1



https://github.com/softwaremill/sttp
https://doc.akka.io/docs/akka-http/current/scala/http/
https://github.com/AsyncHttpClient/async-http-client
https://http4s.org
http://square.github.io/okhttp/

sttp Documentation, Release 1.0

2 Getting started



CHAPTER 1

Quickstart

The main sttp API comes in a single jar without transitive dependencies. This also includes a default, synchronous
backend, which is based on Java’s Ht tpURLConnection. For production usages, you’ll often want to use an
alternate backend (but what’s important is that the API remains the same!). See the section on backends for additional
instructions.

1.1 Using sbt

The basic dependency which provides the API and the default synchronous backend is:

[ [}
°

"com.softwaremill.sttp" %% "core" & "1.7.2"

sttp is available for Scala 2.11 and 2.12, and requires Java 8. The core module has no transitive dependencies.

sttp is also available for Scala.js 0.6. Note that not all modules are compatible and there are no backends that can be
used on both.

1.2 Using Ammonite

If you are an Ammonite user, you can quickly start experimenting with sttp by copy-pasting the following:

import $ivy. com.softwaremill.sttp::core:1.7.2°
import com.softwaremill.sttp.quick._
sttp.get (uri"https://httpbin.org/ip") .send ()

Importing the quick object has the same effect as importing com.softwaremill.sttp._, plus defining an
implicit synchronous backend (val backend = HttpURLConnectionBackend ()), so that sttp can be used
right away.



https://ammonite.io

sttp Documentation, Release 1.0

1.3 Imports

Working with sttp is most convenient if you import the st tp package entirely:

’ import com.softwaremill.sttp._

This brings into scope the starting point for defining requests and some helper methods. All examples in this guide
assume that this import is in place.

And that’s all you need to start using sttp! To create and send your first request, import the above, type sttp. and
see where your IDE’s auto-complete gets you! Or, read on about the basics of defining requests.

4 Chapter 1. Quickstart



CHAPTER 2

Goals of the project

provide a simple, discoverable, no-surprises, reasonably type-safe API for making HTTP requests and reading
responses

separate definition of a request from request execution

provide immutable, easily modifiable data structures for requests and responses
support multiple execution backends, both synchronous and asynchronous
provide support for backend-specific request/response streaming

minimum dependencies

See also the introduction to sttp and sttp streaming & URI interpolators blogs.

2.1

2.2

Non-goals of the project

implement a full HTTP client. Instead, sttp wraps existing HTTP clients, providing a consistent, programmer-
friendly API. All network-related concerns such as sending the requests, connection pooling, receiving re-
sponses are delegated to the chosen backend

provide ultimate flexibility in defining the request. While it’s possible to define most valid HTTP requests, e.g.
some of the less common body chunking approaches aren’t available

How is sttp different from other libraries?

immutable request builder which doesn’t impose any order in which request parameters need to be specified.
Such an approach allows defining partial requests with common cookies/headers/options, which can later be
specialized using a specific URI and HTTP method.

support for multiple backends, both synchronous and asynchronous, with backend-specific streaming support

URI interpolator with context-aware escaping, optional parameters support and parameter collections



https://softwaremill.com/introducing-sttp-the-scala-http-client
https://softwaremill.com/sttp-streaming-uri-interpolator

sttp Documentation, Release 1.0

6 Chapter 2. Goals of the project



CHAPTER 3

Community

If you have a question, or hit a problem, feel free to ask on our gitter channel!

Or, if you encounter a bug, something is unclear in the code or documentation, don’t hesitate and open an issue on
GitHub.

We are also always looking for contributions and new ideas, so if you’d like to get into the project, check out the open
issues, or post your own suggestions!



https://gitter.im/softwaremill/sttp
https://github.com/softwaremill/sttp/issues

sttp Documentation, Release 1.0

8 Chapter 3. Community



CHAPTER 4

Usage examples

4.1 POST a form using the synchronous backend

Required dependencies:

libraryDependencies ++= List ("com.softwaremill.sttp" %% "core" % "1.7.2")

Example code:

import com.softwaremill.sttp._
val signup = Some ("yes")

val request = sttp
// send the body as form data (x-www—form-urlencoded)
.body (Map ("name" -> "John", "surname" -> "doe"))
// use an optional parameter in the URI
.post (uri"https://httpbin.org/post?signup=$signup")

implicit val backend = HttpURLConnectionBackend ()
val response = request.send()

println (response.body)
println (response.headers)

4.2 GET and parse JSON using the akka-http backend and json4ds

Required dependencies:

libraryDependencies ++= List (
"com.softwaremill.sttp" %% "akka-http-backend" % "1.7.2",

(continues on next page)




sttp Documentation, Release 1.0

(continued from previous page)

)

"com.softwaremill.sttp" %% "jsonds" & "1.7.2",

[N}

"org.jsonds" %% "jsonds-native" % "3.6.0"

Example code:

import com.softwaremill.sttp._
import com.softwaremill.sttp.akkahttp._
import com.softwaremill.sttp.jsonds._

import scala.concurrent.ExecutionContext.Implicits.global
case class HttpBinResponse (origin: String, headers: Map|[String, String])

implicit wval serialization = org.json4ds.native.Serialization
val request = sttp
.get (uri"https://httpbin.org/get")
.response (asJson [HttpBinResponse])

implicit val backend = AkkaHttpBackend ()
val response: Future[Response [HttpBinResponse]] = request.send()

for {
r <— response
oA
println(s"Got response code: ${r.code/")
println (r.body)
backend.close ()

4.3 Test an endpoint requiring multiple parameters

Required dependencies:

)

libraryDependencies ++= List ("com.softwaremill.sttp" %% "core" & "1.7.2")

Example code:

import com.softwaremill.sttp._
import com.softwaremill.sttp.testing._

implicit wval backend = SttpBackendStub.synchronous
.whenRequestMatches (_.uri.paramsMap.contains ("filter"))
.thenRespond ("Filtered")
.whenRequestMatches (_.uri.path.contains ("secret"))
.thenRespond ("42")

val parametersl = Map("filter" -> "name=mary", "sort" -> "asc")
println(
sttp
.get (uri"http://example.org?search=true&Sparametersl”)
.send ()
.unsafeBody)

(continues on next page)

10 Chapter 4. Usage examples




sttp Documentation, Release 1.0

(continued from previous page)

val parameters2 =
println(
sttp

Map ("sort"

—>

"desc")

.get (uri"http://example.org/secret/read?Sparameters2")

.send ()
.unsafeBody)

4.3. Test an endpoint requiring multiple parameters

11




sttp Documentation, Release 1.0

12 Chapter 4. Usage examples



CHAPTER B

HTTP Constants

sttp provides constants for common HTTP header names, media types, and status codes.
Constants for common header names are provided by the HeaderNames trait and object.
Constants for common media types are provided by the MediaTypes trait and object.
Constants for common status codes are provided by the StatusCodes trait and object.

Example with objects:

import com.softwaremill.sttp._

object Example (

val request = sttp.header (HeaderNames.ContentType, MediaTypes.Json) .get (uri"https://
—httpbin.org")

implicit wval backend = HttpURLConnectionBackend ()

val response = request.send()

if (response.code == StatusCodes.Ok) println("Ok!")

Example with traits:

import com.softwaremill.sttp._

object Example extends HeaderNames with MediaTypes with StatusCodes {
val request = sttp.header (ContentType, Json) .get (uri"https://httpbin.org")

implicit wval backend = HttpURLConnectionBackend ()
val response = request.send()
if (response.code == Ok) println("Ok!")

For more information see
* https://en.wikipedia.org/wiki/List_of _HTTP_header_fields
* https://en.wikipedia.org/wiki/Media_type

13



https://github.com/softwaremill/sttp/blob/master/core/shared/src/main/scala/com/softwaremill/sttp/HeaderNames.scala
https://github.com/softwaremill/sttp/blob/master/core/shared/src/main/scala/com/softwaremill/sttp/MediaTypes.scala
https://github.com/softwaremill/sttp/blob/master/core/shared/src/main/scala/com/softwaremill/sttp/StatusCodes.scala
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields
https://en.wikipedia.org/wiki/Media_type

sttp Documentation, Release 1.0

e https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

14 Chapter 5. HTTP Constants


https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

CHAPTER O

Request definition basics

As mentioned in the guickstart, the following import will be needed:

import com.softwaremill.sttp._

This brings into scope st tp, the starting request. This request can be customised, each time yielding a new, immutable
request definition (unless a mutable body is set on the request, such as a byte array). As the request definition is
immutable, it can be freely stored in values, shared across threads, and customized multiple times in various ways.

For example, we can set a cookie, St ring -body and specify that this should be a POST request to a given URI:

val request = sttp
.cookie ("login", "me")
.body ("This is a test")
.post (uri"http://endpoint.com/secret™)

The request parameters (headers, cookies, body etc.) can be specified in any order. It doesn’t matter if the request
method, the body, the headers or connection options are specified in this sequence or another. This way you can build
arbitrary request templates, capturing all that’s common among your requests, and customizing as needed. Remember
that each time a modifier is applied to a request, you get a new immutable object.

There’s a lot of ways in which you can customize a request, which are covered in this guide. Another option is to just
explore the API: most of the methods are self-explanatory and carry scaladocs if needed.

Using the modifiers, each time we get a new request definition, but it’s just a description: a data object; nothing is sent
over the network until the send () method is invoked.

6.1 Sending a request

A request definition can be created without knowing how it will be sent. But to send a request, a backend is needed.
A default, synchronous backend based on Java’s Ht t pURLConnection is provided out-of-the box.

To invoke the send () method on a request description, an implicit value of type SttpBackend needs to be in
scope:

15




sttp Documentation, Release 1.0

implicit val backend = HttpURLConnectionBackend ()

val response: Response[String] = request.send()

The default backend doesn’t wrap the response into any container, but other asynchronous backends might do so. See
the section on backends for more details.

Note: Only requests with the request method and uri can be sent. If trying to send a request without these components
specified, a compile-time error will be reported. On how this is implemented, see the documentation on the rype of
request definitions.

6.2 Starting requests

sttp provides two starting requests:

* sttp, which is an empty request with the Accept-Encoding: gzip, deflate header added. That’s
the one that is most commonly used.

* empty, a completely empty request, with no headers at all.

Both of these requests will by default read the response body into a UTF-8 String. How the response body is
handled is also part of the request definition. See the section on response body specifications for more details on how
to customize that.

6.3 Debugging requests

sttp comes with builtin request to curl converter. To convert request to curl invocation use foCurl method.

For example converting given request:

sttp.get (uri"http://httpbin.org/ip") .toCurl

will result in following curl command:

’curl -L —-max-redirs 32 -X GET "http://httpbin.org/ip"

Note that the " Accept-Encoding header, which is added by default to all requests (' Accept-Encoding:
gzip, deflate) is filtered out from the generated command, so that when running a request from the command
line, the result has higher chance of being human-readable, and not compressed.

16 Chapter 6. Request definition basics



CHAPTER /

URIs

A request can only be sent if the request method & URI are defined. To represent URISs, sttp comes with a Uri case
class, which captures all of the parts of an address.

To specify the request method and URI, use one of the methods on the request definition corresponding to the name
of the desired HTTP method: .post, .get, .put etc. All of them accept a single parameter, the URI to which the
request should be sent (these methods only modify the request definition; they don’t send the requests).

The Uri class is immutable, and can be constructed by hand, but in many cases the URI interpolator will be easier to
use.

7.1 URI interpolator

Using the URI interpolator it’s possible to conveniently create Uri instances, for example:

import com.softwaremill.sttp._

val user = "Mary Smith"
val filter = "programming languages"

val endpoint: Uri = uri"http://example.com/$user/skills?filter=$filter"

assert (endpoint.toString ==
"http://example.com/Mary%$20Smith/skills?filter=programming+languages")

Note the uri prefix before the string and the standard Scala string-embedding syntax ($user, $filter).

Any values embedded in the URI will be URL-encoded, taking into account the context (e.g., the whitespace in user
will be %-encoded as $20D, while the whitespace in £i1ter will be query-encoded as +). On the other hand, parts
of the URI given as literal strings (not embedded values), are assumed to be URL-encoded and thus will be decoded
when creating a Uri instance.

All components of the URI can be embedded from values: scheme, username/password, host, port, path, query and
fragment. The embedded values won’t be further parsed, with the exception of the : in the host part, which is
commonly used to pass in both the host and port:

17




sttp Documentation, Release 1.0

println (uri"http://example.org/${"a/b"}")
// the embedded / is escaped: http://example.org/a%2Fb

println(uri"http://example.org/${"a"}/S${"b"}")
// the embedded / is escaped: http://example.org/a/b

println(uri"http://${"example.org:8080"}")
// the embedded : is not escaped: http://example.org:8080

Both the Uri class and the interpolator can be used stand-alone, without using the rest of sttp. Conversions are
available both from and to java.net .URI; Uri.toString returns the URI as a String.

7.2 Optional values

The URI interpolator supports optional values for hosts (subdomains), query parameters and the fragment. If the value
is None, the appropriate URI component will be removed. For example:

None
Some ("v2")

val vl
val v2

val ul = uri"http://example.com?pl=Svigp2=v2"
assert (ul.toString == "http://example.com?p2=v2")

val u2 = uri"http://Svl.Sv2.example.com"
assert (u2.toString == "http://v2.example.com")

val u3 = uri"http://example.com#Svl"
assert (u3.toString == "http://example.com")

7.3 Maps and sequences

Maps, sequences of tuples and sequences of values can be embedded in the query part. They will be expanded into
query parameters. Maps and sequences of tuples can also contain optional values, for which mappings will be removed
if None.

For example:

Val ps = Map("plﬂ 7> "Vl", "p2" 7> "VZ ")
val u4 = uri"http://example.com?Sps&p3=p4"
assert (u4.toString == "http://example.com?pl=v1&p2=v2&p3=pi")

Sequences in the host part will be expanded to a subdomain sequence, and sequences in the path will be expanded to
path components:

val ps = List("a", "b", "c")
val u5 = uri"http://example.com/$ps"
assert (ub.toString == "http://example.com/a/b/c")

18 Chapter 7. URIs




sttp Documentation, Release 1.0

7.4 Special cases

If a string containing the protocol is embedded as the very beginning, it will not be escaped, allowing to embed entire
addresses as prefixes, e.g.: uri"$endpoint/login", where val endpoint = "http://example.com/
api".

This is useful when a base URI is stored in a value, and can then be used as a base for constructing more specific URIs.

7.5 All features combined

A fully-featured example:

import com.softwaremill.sttp._

val secure = true

val scheme = if (secure) "https" else "http"
val subdomains = List ("subl", "sub2")

val vx = Some ("y z")

val params = Map("a" -> 1, "b" -> 2)

val jumpTo = Some ("section2")

uri"S$scheme://$subdomains.example.com?x=5Svx&Sparams#$ jumpTo"

// generates:
// https://subl.sub2.example.com?x=y+z&a=1&b=2#section2

7.4. Special cases 19




sttp Documentation, Release 1.0

20 Chapter 7. URIs



CHAPTER 8

Headers

Arbitrary headers can be set on the request using the . header method:

sttp.header ("User—-Agent", "myapp")

As with any other request definition modifier, this method will yield a new request, which has the given header set.
The headers can be set at any point when defining the request, arbitrarily interleaved with other modifiers.

While most headers should be set only once on a request, HTTP allows setting a header multiple times. That’s why
the header method has an additional optional boolean parameter, replaceExisting, which defaults to true.
This way, if the same header is specified twice, only the last value will be included in the request. If previous values
should be preserved, set this parameter to false.

There are also variants of this method accepting a number of headers:

def header (k: String, v: String, replaceExisting: Boolean = false)
def headers (hs: Map|[String, String])
def headers (hs: (String, String) x)

Both of the headers append the given headers to the ones currently in the request, without removing duplicates.

8.1 Common headers

For some common headers, dedicated methods are provided:

def contentType(ct: String)

def contentType(ct: String, encoding: String)
def contentLength(l: Long)

def acceptEncoding(encoding: String)

See also documentation on setting cookies and authentication.

21




sttp Documentation, Release 1.0

22 Chapter 8. Headers



CHAPTER 9

Cookies

Cookies sent in requests are key-value pairs contained in the Cook ie header. They can be set on a request in a couple
of ways. The first is using the . cookie (name: String, value: String) method. This will yield a new
request definition which, when sent, will contain the given cookie.

Cookies are currently only available on the JVM.

Cookies can also be set using the following methods:

def cookie(nv: (String, String))
def cookie(n: String, v: String)
def cookies (nvs: (String, String) x)

9.1 Cookies from responses

It is often necessary to copy cookies from a response, e.g. after a login request is sent, and a successful response with
the authentication cookie received. Having an object response: Response[_], cookies on a request can be
copied:

// Method signature
def cookies (r: Response[_])

// Usage
sttp.cookies (response)

Or, it’s also possible to store only the com.softwaremill.sttp.Cookie objects (a sequence of which can be
obtained from a response), and set the on the request:

def cookies(cs: Seq[Cookie])

23




sttp Documentation, Release 1.0

24 Chapter 9. Cookies



cHAaPTER 10

Authentication

sttp supports basic and bearer-token based authentication. In both cases, an Authorization header is added with
the appropriate credentials.

Basic authentication, using which the username and password are encoded using Base64, can be added as follows:

’sttp.auth.basic(username, password)

A bearer token can be added using:

’sttp.auth.bearer(token)

25



sttp Documentation, Release 1.0

26 Chapter 10. Authentication



cHAPTER 11

Setting the request body

11.1 Text data

In its simplest form, the request’s body can be set as a St ring. By default, this method will:
* use the UTF-8 encoding to convert the string to a byte array
* if not specified before, set Content-Type: text/plain
« if not specified before, set Content-Length to the number of bytes in the array

A String body can be set on a request as follows:

sttp.body ("Hello, world!")

It is also possible to use a different character encoding:

def body (b: String)
def body (b: String, encoding: String)

11.2 Binary data

To set a binary-data body, the following methods are available:

def body (b: Array[Byte])
def body (b: ByteBuffer)
def body (b: InputStream)

If not specified before, these methods will set the content type to application/octet-stream. When using a
byte array, additionally the content length will be set to the length of the array (unless specified explicitly).

Note: While the object defining a request is immutable, setting a mutable request body will make the whole request
definition mutable as well. With Input St ream, the request can be moreover sent only once, as input streams can be

27




sttp Documentation, Release 1.0

consumed once.

11.3 Uploading files

To upload a file, simply set the request body asaFile or Path:

def body (f: File)
def body (b: Path)

Note that on JavaScript only a Web/API/File is allowed.

As with binary body methods, the content type will default to application/octet—stream, and the content
length will be set to the length of the file (unless specified explicitly).

See also multi-part and streaming support.

11.4 Form data

If you set the body as a Map [String, String] or Seq[ (String, String) ], it will be encoded as form-
data (as if a web form with the given values was submitted). The content type will default to application/
x-www-form-urlencoded; content length will also be set if not specified.

By default, the UTF -8 encoding is used, but can be also specified explicitly:

def body (fs: Map[String, String])

def body(fs: Map[String, String], encoding: String)
def body (fs (String, String) x)
def body (fs: Seq[ (String, String)], encoding: String)

11.5 Custom body serializers

It is also possible to set custom types as request bodies, as long as there’s an implicit BodySerializer [B] value
in scope, which is simply an alias for a function:

’type BodySerializer[B] = B => BasicRequestBody

A BasicRequestBody is a wrapper for one of the supported request body types: a St ring/byte array or an input
stream.

For example, here’s how to write a custom serializer for a case class, with serializer-specific default content type:

case class Person (name: String, surname: String, age: Int)

// for this example, assuming names/surnames can't contain commas
implicit val personSerializer: BodySerializer [Person] = { p: Person =>
val serialized = s"&S{p.name/, S{p.surname/, 5{p.age /"

StringBody (serialized, "UTF-8", Some ("application/csv"))

sttp.body (Person ("mary", "smith", 67))

See the implementations of the BasicRequestBody trait for more options.

28 Chapter 11. Setting the request body



cHAPTER 12

Multipart requests

To set a multipart body on a request, the mult ipartBody method should be used (instead of body). Each body
part is represented as an instance of Mult ipart, which can be conveniently constructed using mult ipart methods
coming from the com.softwaremill. sttp package.

A single part of a multipart request consist of a mandatory name and a payload of type:
* String
e Array[Byte]
* ByteBuffer
e ITnputStream
* Map[String, String]
e Seqg[ (String, String)]

To add a file part, the multipartFile method (also from the com.softwaremill.sttp package) should be
used. This method is overloaded and supports File/Path objects on the JVM, and Web/API/File onJS.

The content type of each part is by default the same as when setting simple bodies: text/plain for parts
of type String, application/x-www—form-urlencoded for parts of key-value pairs (form data) and
application/octet—-stream otherwise (for binary data).

The parts can be specified using either a Seq [Multipart] or by using multiple arguments:

def multipartBody (ps: Seq[Multipart])
def multipartBody (pl: Multipart, ps: Multipartx)

For example:

sttp.multipartBody (

multipart ("text_part", "datal"),
multipartFile("file_part", someFile), // someFile: File
multipart ("form part", Map("x" -> "10", "y" -> "yes"))

29




sttp Documentation, Release 1.0

12.1 Customising part meta-data

For each part, an optional filename can be specified, as well as a custom content type and additional headers. The
following methods are available on Multipart instances:

case class Multipart {
def fileName (v: String): Multipart
def contentType (v: String): Multipart
def header (k: String, v: String): Multipart

For example:

sttp.multipartBody (
multipartFile ("logo", logoFile).fileName ("logo.jpg") .contentType ("image/jpg"),
multipartFile ("text", docFile).fileName ("text.doc")

30 Chapter 12. Multipart requests




cHAPTER 13

Streaming

Some backends (see backends summary) support streaming bodies. If that’s the case, you can set a stream of the
supported type as a request body using the st reamBody method, instead of the usual body method.

Note: Here, streaming refers to (usually) non-blocking, asynchronous streams of data. To send data which is available
as an InputStream, or a file from local storage (which is available as a File or Path), no special backend support
is needed. See the documenttation on setting the request body.

For example, using the akka-http backend, a request with a streaming body can be defined as follows:

import com.softwaremill.sttp._
import com.softwaremill.sttp.akkahttp._

import akka.stream.scaladsl.Source
import akka.util.ByteString

val source: Source[ByteString, Any] =
sttp

.streamBody (source)
.post (uri"...")

Note: A request with the body set as a stream can only be sent using a backend supporting exactly the given type of
streams.

31




sttp Documentation, Release 1.0

32 Chapter 13. Streaming



cHAPTER 14

The type of request definitions

All request definitions have type RequestT[U, T, S] (RequestT as in Request Template). If this looks a bit
complex, don’t worry, what the three type parameters stand for is the only thing you’ll hopefully have to remember
when using the API!

Going one-by-one:

e U[_] specifies if the request method and URL are specified. Using the API, this can be either type
Empty [X] = None, meaning that the request has neither a method nor an URI. Or, it can be type Id[X]
= X (type-level identity), meaning that the request has both a method and an URI specified. Only requests with
a specified URI & method can be sent.

» T specifies the type to which the response will be read. By default, this is String. But it can also be e.g.
Array [Byte] or Unit, if the response should be ignored. Response body handling can be changed by
calling the . response method. With backends which support streaming, this can also be a supported stream
type. See response body specifications for more details.

* S specifies the stream type that this request uses. Most of the time this will be Not hing, meaning that this
request does not send a streaming body or receive a streaming response. So most of the time you can just ignore
that parameter. But, if you are using a streaming backend and want to send/receive a stream, the . st reamBody
or response (asStream[S]) will change the type parameter.

There are two type aliases for the request template that are used:
* type Request [T, S] = RequestT[Id, T, S].A sendablerequest.
* type PartialRequest [T, S] = RequestT[Empty, T, S]

As sttp, the starting request, by default reads the body into a St ring, its type is:

sttp: PartialRequest [String, Nothing]

33



sttp Documentation, Release 1.0

34 Chapter 14. The type of request definitions



cHAPTER 15

Responses

Responses are represented as instances of the case class Response [T], where T is the type of the response body.
When sending a request, the response will be returned in a wrapper. For example, for asynchronous backends, we can
getaFuture [Response [T] ], while for the default synchronous backend, the wrapper will be a no-op, Id, which
is the same as no wrapper at all.

If sending the request fails, either due to client or connection errors, an exception will be thrown (synchronous back-
ends), or an error will be represented in the wrapper (e.g. a failed future).

Note: If the request completes, but results in a non-2xx return code, the request is still considered successful, that is,
aResponse [T] will be returned. See response body specifications and/or handling non 2xx responses for details on
how such cases are handled.

15.1 Response code

The response code is available through the .code property. There are also methods such as .isSuccess or .
isServerError for checking specific response code ranges.

15.2 Response headers

Response headers are available through the . headers property, which gives all headers as a sequence (not as a map,
as there can be multiple headers with the same name).

Individual headers can be obtained using the methods:

def header (h: String): Option|[String]
def headers (h: String): Seq[String]

There are also helper methods available to read some commonly accessed headers:

35




sttp Documentation, Release 1.0

def contentType: Option[String]
def contentLength: Option[Long]

Finally, it’s possible to parse the response cookies into a sequence of the Cook ie case class:

def cookies: Seqg[Cookie]

If the cookies from a response should be set without changes on the request, this can be done directly; see the cookies
section in the request definition documentation.

15.3 Obtaining the response body

The response body can be obtained through the .body: Either[String, T] lazy value or the
rawErrorBody: Either[Array[Byte], T] property. T isthe body deserialized as specified in the request
- see the next section on response body specifications.

The response body is an either as the body can only be deserialized if the server responded with one of the expected
status codes (by default it’s any 2xx code). Otherwise, the response body is most probably an error message.

Hence, response.body will be a:
* Left (errorMessage) if the request is successful, but response code is not expected (non 2xx by default).
* Right (deserializedBody) if the request is successful and the response code is expected (2xx by default).
To learn how to obtain non 2xx response body see this section.

You can also forcibly get the deserialized body, regardless of the response code and risking an exception being thrown,
using the response.unsafeBody method.

36 Chapter 15. Responses




cHAPTER 16

Response body specification

By default, the received response body will be read as a St ring, using the encoding specified in the Content-Type
response header (and if none is specified, using UTF—-8). This is of course configurable: response bodies can be

ignored, deserialized into custom types, received as a stream or saved to a file.

How the response body will be read is part of the request definition, as already when sending the request, the back-
end needs to know what to do with the response. The type to which the response body should be deserialized
is the second type parameter of RequestT, and stored in the request definition as the request.response:

ResponseAs [T, S] property.

16.1 Basic response specifications

To conveniently specify how to deserialize the response body, a number of asXxx methods are available. They can

be used to provide a value for the request definition’s response modifier:

sttp.response (asByteArray)

When the above request is completed and sent, it will result in a Response [Array [Byte]].

response specifications are:

Other possible

def ignore: ResponseAs|[Unit, Nothing]

def asString: ResponseAs[String, Nothing]

def asString(encoding: String): ResponseAs|[String, Nothing]
def asByteArray: ResponseAs[Array|[Byte], Nothing]

def asParams: ResponseAs|[Seq| (String, String) ], Nothing]

def asParams (encoding: String): ResponseAs|[Seq| (String, String)], Nothing] =
def asFile(file: File, overwrite: Boolean = false): ResponseAs|[File, Nothing]
def asPath (path: Path, overwrite: Boolean = false): ResponseAs|[Path, Nothing]

Hence, to discard the response body, simply specify:

sttp.response (ignore)

And to save the response to a file:

37




sttp Documentation, Release 1.0

sttp.response (asFile (someFile))

Note: As the handling of response is specified upfront, there’s no need to “consume” the response body. It can be
safely discarded if not needed.

16.2 Handling non 2xx responses

By default only a successful (2xx) response body can be obtained. To customize this behaviour use
parseResponself method:

val response =
sttp
.post (uri"...")
.body (requestPayload)
.response (asXxx)
.parseResponselIf (status => status == 400 || status == 200)
.send ()

16.3 Custom body deserializers

It’s possible to define custom body deserializers by taking any of the built-in response specifications and mapping over
them. Each ResponseAs instance has map and mapWithMetadata methods, which can be used to transform it
to a specification for another type (optionally using response metadata, such as headers or the status code). Each such
value is immutable and can be used multiple times.

As an example, to read the response body as an int, the following response specification can be defined (warning: this
ignores the possibility of exceptions!):

val asInt: ResponseAs|[Int, Nothing] = asString.map(_.tolnt)

sttp
.response (asInt)

To integrate with a third-party JSON library:

def parseJson(json: String): Either[JsonError, JsonAST]| =
val asJson: ResponseAs [Either [JsonError, JsonAST], Nothing] = asString.map (parsedson)

sttp
.response (asJdson)

For some mapped response specifications available out-of-the-box, see json support.

16.4 Streaming

If the backend used supports streaming (see backends summary), it’s possible to receive responses as a stream. This
can be specified using the following method:

38 Chapter 16. Response body specification



sttp Documentation, Release 1.0

def asStream[S]: ResponseAs[S, S] = ResponseAsStream[S, S] ()

For example, when using the akka-http backend:

import com.softwaremill.sttp._
import com.softwaremill.sttp.akkahttp._

import akka.stream.scaladsl.Source
import akka.util.ByteString

implicit val sttpBackend = AkkaHttpBackend ()

val response: Future[Response[Source[ByteString, Any]]] =
sttp
.post (uri"...")
.response (asStream|[Source [ByteString, Any]])
.send ()

Note: Unlike with non-streaming response handlers, each streaming response should be entirely consumed by client
code.

16.4. Streaming 39




sttp Documentation, Release 1.0

40 Chapter 16. Response body specification



cHAPTER 17

Supported backends

sttp supports a number of synchronous and asynchronous backends. It’s the backends that take care of managing
connections, sending requests and receiving responses: sttp defines only the API to describe the requests to be send
and handle the response data. It’s the backends where all the heavy-lifting is done.

Choosing the right backend depends on a number of factors: if you are using sttp to explore some data, or is it a pro-
duction system; are you using a synchronous, blocking architecture or an asynchronous one; do you work mostly with
Scala’s Future, or maybe you use some form of a Task abstraction; finally, if you want to stream requests/responses,
or not.

Each backend has two type parameters:

* R[_], the type constructor in which responses are wrapped. That is, when you invoke send () on a request
description, do you get a Response [__] directly, or is it wrapped in a Future or a Task?

¢ 3, the type of supported streams. If Nothing, streaming is not supported. Otherwise, the given type can be
used to send request bodies or receive response bodies.

Below is a summary of all the backends. See the sections on individual backend implementations for more information.

41



sttp Documentation, Release 1.0

Class Response wrapper Supported stream type
HttpURLConnectionBackend None (Id) n/a
TryHttpURLConnectionBacklerdala.util.Try n/a

AkkaHttpBackend scala.concurrent. akka.stream.scaladsl.

Future Source [ByteString, Any]
AsyncHttpClientFutureBadksndla.concurrent. n/a

Future
AsyncHttpClientScalazBadksndlaz. n/a

concurrent.Task
AsyncHttpClientZioBackendzio.IO n/a
AsyncHttpClientZioStreansBack&ad zio.stream.Stream|[Throwable,

ByteBuffer]

AsyncHttpClientMonixBack

emdnix.eval.Task

monix.reactive.
Observable[ByteBuffer]

AsyncHttpClientCatsBackenB([_]: cats. n/a
effect.Async
AsyncHttpClientFs2BackendF[_]: cats. fs2.Stream[F, ByteBuffer]
effect.Async
OkHttpSyncBackend None (Id) n/a
OkHttpFutureBackend scala.concurrent. n/a
Future
OkHttpMonixBackend monix.eval.Task monix.reactive.
Observable[ByteBuffer]
Http4d4sBackend Fl_]: cats. fs2.Stream[F, Byte]

effect.Effect

There are also backends which wrap other backends to provide additional functionality. These include:

* TryBackend, which safely wraps any exceptions thrown by a synchronous backend in scala.util.Try

* BraveBackend, for Zipkin-compatible distributed tracing. See the dedicated section.

* PrometheusBackend, for gathering Prometheus-format metrics. See the dedicated section.

In additional there are also backends for JavaScript:

Class Response wrapper Supported stream type
FetchBackend scala.concurrent. n/a
Future
FetchMonixBackend monix.eval.Task monix.reactive.
Observable [ByteBuffer]

and Scala Native:

Class Response wrapper | Supported stream type
CurlBackend None (id) n/a
CurlTryBackend | scala.util.Try | n/a

Finally, there are third-party backends:

o sttp-play-ws for “standard” play-ws (not standalone).

» akkaMonixSttpBackend, an Akka-based backend, but using Monix’s Task & Observable.

42

Chapter 17. Supported backends


https://github.com/ragb/sttp-play-ws
https://github.com/fullfacing/akkaMonixSttpBackend

cHAPTER 18

Starting & cleaning up

In case of most backends, you should only instantiate a backend once per application, as a backend typically allocates
resources such as thread or connection pools.

When ending the application, make sure to call backend.close (), which will free up resources used by the
backend (if any). The close process might be asynchronous, that is it can complete after the close () method
returns.

Note that only resources allocated by the backends are freed. For example, if you use the AkkaHttpBackend () the
close () method will terminate the underlying actor system. However, if you have provided an existing actor system
upon backend creation (AkkaHttpBackend.usingActorSystem), the close () method will be a no-op.

43



sttp Documentation, Release 1.0

44 Chapter 18. Starting & cleaning up



cHAPTER 19

HttpURLConnection backend

The default synchronous backend. Sending a request returns a response wrapped in the identity type constructor,
which is equivalent to no wrapper at all.

To use, add an implicit value:

implicit val sttpBackend = HttpURLConnectionBackend ()

45



sttp Documentation, Release 1.0

46 Chapter 19. HttpURLConnection backend



cHAPTER 20

akka-http backend

To use, add the following dependency to your project:

"com.softwaremill.sttp" %% "akka-http-backend" % "1.7.2"

This backend depends on akka-http. A fully asynchronous backend. Sending a request returns a response wrapped in
aFuture.

Note that you’ll also need an explicit dependency on akka-streams, as akka-http doesn’t depend on any specific akka-
streams version. So you’ll also need to add, for example:

"com.typesafe.akka" %% "akka-stream" % "2.5.11"

Next you’ll need to add an implicit value:

implicit val sttpBackend = AkkaHttpBackend ()

// or, if you'd like to use an existing actor system:
implicit val sttpBackend = AkkaHttpBackend.usingActorSystem (actorSystem)

This backend supports sending and receiving akka-streams streams of type akka.stream.scaladsl.
Source[ByteString, Any].

To set the request body as a stream:

import com.softwaremill.sttp._
import com.softwaremill.sttp.akkahttp._

import akka.stream.scaladsl.Source
import akka.util.ByteString

val source: Source[ByteString, Any]| =
sttp

.streamBody (source)
.post (uri"...")

47



http://doc.akka.io/docs/akka-http/current/scala/http/
http://doc.akka.io/docs/akka/current/scala/stream/index.html

sttp Documentation, Release 1.0

To receive the response body as a stream:

import com.softwaremill.sttp._
import com.softwaremill.sttp.akkahttp._

import akka.stream.scaladsl.Source
import akka.util.ByteString

implicit wval sttpBackend = AkkaHttpBackend ()

val response: Future[Response[Source[ByteString, Any]]] =
sttp
.post (uri"...")
.response (asStream|[Source [ByteString, Any]])
.send ()

20.1 Testing

For testing, you can create a backend using any HttpRequest => Future[ HttpResponse] function, or an akka-http
Route.

That way, you can “mock” a server that the backend will talk to, without starting any actual server or making any
HTTP calls.

If your application provides a client library for its dependants to use, this is a great way to ensure that the client actually
matches the routes exposed by your application:

val backend: SttpBackend[Future, Nothing] = {
AkkaHttpBackend.usingClient (system, http = AkkaHttpClient.stubFromRoute (Routes.
—route))

}

48 Chapter 20. akka-http backend




CHAPTER 2 1

async-http-client backend

To use, add the following dependency to your project:

"com.softwaremill.

// or

"com.softwaremill.

// or

"com.softwaremill.

// or

"com.softwaremill.

// or

"com.softwaremill.

// or
"com.softwaremill

// or

"com.softwaremill.

sttp"

sttp"

sttp"

sttp"

sttp"

.sttp"

sttp"

o)

%% "async-http-client-backend-future" & "1.7.2"

o\
o\

"async-http-client-backend-scalaz" % "1.7.2"

o

"async-http-client-backend-zio" % "1.7.2"

o\
o\

o)

"async-http-client-backend-zio-streams" % "1.7.2"

oe
o

o

"async-http-client-backend-monix" % "1.7.2"

o\
o\

o\
o\

"async-http-client-backend-cats" % "1.7.2"

oe
o

"async-http-client-backend-£fs2" % "1.7.2"

This backend depends on async-http-client. A fully asynchronous backend, which uses Netty behind the scenes.

The responses are wrapped depending on the dependency chosen in either a:

e standard Scala Future

» Scalaz Task. There’s a transitive dependency on scalaz—concurrent.

e 7ZIO I0. There’s a transitive dependency on z1io.

e Monix Task. There’s a transitive dependency on monix-eval.

* Any type implementing the Cats Effect Async typeclass, such as cats.effect.IO. There’s a transitive
dependency on cats-effect.

e fs2 Stream. There are transitive dependencies on £s2, fs2-reactive—streams, and cats-effect.

Next you’ll need to add an implicit value:

implicit wval sttpBackend

= AsyncHttpClientFutureBackend ()

(continues on next page)

49



https://github.com/AsyncHttpClient/async-http-client
http://netty.io
https://github.com/scalaz/scalaz
https://github.com/zio/zio
https://monix.io
https://github.com/typelevel/cats-effect
https://github.com/functional-streams-for-scala/fs2

sttp Documentation, Release 1.0

(continued from previous page)

// or, 1f you're using the
implicit val sttpBackend =

// or, 1f you're using the
implicit val sttpBackend =

// or, 1f you're using the
implicit wval sttpBackend =

// or, 1f you're using the
implicit val sttpBackend =

// or, 1f you're using the
implicit wval sttpBackend =

// or, 1f you're using the
implicit wval sttpBackend =

// or,
implicit wval sttpBackend =

scalaz version:
AsyncHttpClientScalazBackend ()

zio version:
AsyncHttpClientZioBackend ()

zio version with zio-streams for http streaming:
AsyncHttpClientZioStreamsBackend ()

monix version:
AsyncHttpClientMonixBackend ()

cats effect version:
AsyncHttpClientCatsBackend[cats.effect.IO] ()

fs2 version:
AsyncHttpClientFs2Backend[cats.effect.IO] ()

if you'd like to use custom configuration:

AsyncHttpClientFutureBackend.

—usingConfig (asyncHttpClientConfig)

// or,
implicit wval sttpBackend =

—usingConfigBuilder (adjustFunction,

if you'd like to use adjust the configuration sttp creates:

AsyncHttpClientFutureBackend.
sttpOptions)

// or,
implicit wval sttpBackend =

if you'd like to instantiate the AsyncHttpClient yourself:
AsyncHttpClientFutureBackend.usingClient (asyncHttpClient)

21.1 Streaming using Monix

The Monix backend supports streaming (as both Monix and Async Http Client support reactive streams Publisher
s out of the box). The type of supported streams in this case is Observable [ByteBuffer]. Thatis, you can set
such an observable as a request body:

import
import

com.softwaremill.sttp._
com.softwaremill.sttp.asynchttpclient .monix._

import
import

java.nio.ByteBuffer
monix.reactive.Observable

implicit val sttpBackend = AsyncHttpClientMonixBackend ()
val obs: Observable[ByteBuffer] =
sttp

.streamBody (obs)
.post (uri"...")

And receive responses as an observable stream:

import com.softwaremill.sttp._
import com.softwaremill.sttp.asynchttpclient.monix._

(continues on next page)

50 Chapter 21. async-http-client backend




sttp Documentation, Release 1.0

(continued from previous page)

import java.nio.ByteBuffer

import monix.eval.Task

import monix.reactive.Observable

import scala.concurrent.duration.Duration

implicit val sttpBackend = AsyncHttpClientMonixBackend ()

val response: Task[Response[Observable [ByteBuffer]]] =
sttp
.post (uri"...")
.response (asStream|[Observable [ByteBuffer]])
.readTimeout (Duration.Inf)
.send ()

21.2 Streaming using fs2

The fs2 backend supports streaming in any instance of the cats.effect.Effect typeclass, such as cats.
effect.IO.If I0isused then the type of supported streams is £s2.Stream[I0, ByteBuffer].

Requests can be sent with a streaming body like this:

import com.softwaremill.sttp._
import com.softwaremill.sttp.asynchttpclient.fs2.AsyncHttpClientFs2Backend

import java.nio.ByteBuffer
import cats.effect.{ContextShift, IO}
import fs2.Stream

implicit wval cs: ContextShift[IO] = IO.contextShift (ExecutionContext.Implicits.global)
implicit val sttpBackend = AsyncHttpClientFs2Backend[IO] ()

val stream: Stream[IO, ByteBuffer] =
sttp

.streamBody (stream)
.post (uri"...")

Responses can also be streamed:

import com.softwaremill.sttp._
import com.softwaremill.sttp.asynchttpclient.fs2.AsyncHttpClientFs2Backend

import java.nio.ByteBuffer

import cats.effect.{ContextShift, IO}
import fs2.Stream

import scala.concurrent.duration.Duration

implicit val cs: ContextShift[IO] = IO.contextShift (ExecutionContext.Implicits.global)
implicit val sttpBackend = AsyncHttpClientFs2Backend[IO] ()

val response: IO[Response|[Stream[IO, ByteBuffer]]] =
sttp
.post (uri"...")
.response (asStream|[Stream[IO, ByteBuffer]])

(continues on next page)

21.2. Streaming using fs2 51




sttp Documentation, Release 1.0

(continued from previous page)

.readTimeout (Duration.Inf)
.send ()

52

Chapter 21. async-http-client backend




CHAPTER 22

OkHttp backend

To use, add the following dependency to your project:

"com.softwaremill.sttp" %% "okhttp-backend" % "1.7.2"
// or, for the monix version:
"com.softwaremill.sttp" %% "okhttp-backend-monix"™ % "1.7.2"

This backend depends on OkHttp, and offers:
* asynchronous backend: OkHttpSyncBackend
¢ an asynchronous, Future-based backend: OkHttpFutureBackend
¢ an asynchronous, Monix-Task-based backend: OkHttpMonixBackend

OkHttp fully supports HTTP/2.

53



http://square.github.io/okhttp/

sttp Documentation, Release 1.0

54 Chapter 22. OkHttp backend



CHAPTER 23

Http4s backend

To use, add the following dependency to your project:

"com.softwaremill.sttp" %% "http4s-backend" % "1.7.2"

This backend depends on http4s (blaze client), and offers an asynchronous backend, which can wrap results in any
type implementing the cats-effect Ef fect typeclass.

Please note that: * the backend does not support St tpBackendOptions, that is specifying proxy settings (proxies
are not implemented in http4s, see this issue), as well as configuring the connect timeout * the backend does not
support the RequestT.options.readTimeout option

Instead, all custom timeout configuration should be done by creating a org.httpds.client.Client [F], using
org.http4s.client.blaze.BlazeClientBuilder [F] and passing it to the appropriate method of the
Http4sBackend object.

The backend supports streaming using fs2. For usage details, see the documentation on streaming using fs2 with the
async-http-backend.

55


https://http4s.org
https://github.com/typelevel/cats-effect
https://github.com/http4s/http4s/issues/251
asynchttpclient.html#streaming-using-fs2
asynchttpclient.html#streaming-using-fs2

sttp Documentation, Release 1.0

56 Chapter 23. Http4s backend



CHAPTER 24

brave backend

To use, add the following dependency to your project:

"com.softwaremill.sttp" %% "brave-backend" % "1.7.2"

This backend depends on brave, a distributed tracing implementation compatible with Zipkin backend services.

The brave backend wraps any other backend, and needs an instance of brave’s HttpTracing or Tracing, for
example:

val httpTracing: HttpTracing = .
implicit val sttpBackend = BraveBackend (AkkaHttpBackend (), httpTracing)

The backend obtains the current trace context using default Brave’s propagation mechanisms. As it’s often challenging
to integrate context propagation in an asynchronous setting, there’s also a possibility to add the trace context to the
request’s tags:

import com.softwaremill.sttp.brave.BraveBackend._
val parent: TraceContext =
sttp

.get (...)
.tagWithTraceContext (parent))

57



https://github.com/openzipkin/brave

sttp Documentation, Release 1.0

58 Chapter 24. brave backend



CHAPTER 25

Prometheus backend

To use, add the following dependency to your project:

"com.softwaremill.sttp" %% "prometheus-backend" % "1.7.2"

This backend depends on Prometheus JVM Client. Keep in mind this backend registers histograms and gathers request
times, but you have to expose those metrics to Prometheus e.g. using prometheus-akka-http.

The Prometheus backend wraps any other backend, for example:

implicit val sttpBackend = PrometheusBackend (AkkaHttpBackend())

It gathers request execution times in Hi stogram. It uses by default sttp_request_latency name, defined in
PrometheusBackend.DefaultHistogramName. It is possible to define custom histograms name by passing
function mapping request to histogram name:

implicit val sttpBackend = PrometheusBackend (AkkaHttpBackend (), request =>
—Some (request.uri.host))

You can disable request histograms by passing None returning function:

implicit val sttpBackend = PrometheusBackend (AkkaHttpBackend (), _ => None)
This backend also offers Gauge with currently in-progress requests number. It uses
by default sttp_requests_in_progress name, defined in PrometheusBackend.

DefaultRequestsInProgressGaugeName. It is possible to define custom gauge name by passing
function mapping request to gauge name:

implicit val sttpBackend = PrometheusBackend (AkkaHttpBackend(),
—requestToInProgressGaugeNameMapper = request => Some (request.uri.host))

You can disable request in-progress gauges by passing None returning function:

implicit val sttpBackend = PrometheusBackend (AkkaHttpBackend ()
—requestToInProgressGaugeNameMapper = _ => None)

L=

59



https://github.com/prometheus/client_java
https://prometheus.io/
https://github.com/lonelyplanet/prometheus-akka-http

sttp Documentation, Release 1.0

60 Chapter 25. Prometheus backend



CHAPTER 20

Fetch backend

A JavaScript backend implemented using the Fetch API and backed via Future.

To use, add the following dependency to your project:

°

’"com.softwaremill.sttp" $%% "core" % "1.7.2"

And add an implicit value:

’implicit val sttpBackend = FetchBackend ()

Timeouts are handled via the new AbortController class. As this class only recently appeared in browsers you may
need to add a polyfill.

As browsers do not allow access to redirect responses, if a request sets followRedirects to false then a redirect
will cause the response to return an error.

Note that Fetch does not pass cookies by default. If your request needs cookies then you will need to pass
a FetchOptions instance with credentials set to either RequestCredentials.same-origin or
RequestCredentials.include depending on your requirements.

26.1 Node.js

Running sttp in a node.js will require downloading modules that implement the various classes and functions used
by sttp, usually available in browser. At minima, you will need replacement for fet ch, AbortController and
Headers. To achieve this, you can either use npm directly, or the scalajs-bundler sbt plugin if you use sbt

npm install --save node-fetch
npm install --save abortcontroller-polyfill
npm install --save fetch-headers

You then need to load the modules into your runtime. This can be done in your main method as such

61


https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/AbortController
https://www.npmjs.com/package/abortcontroller-polyfill

sttp Documentation, Release 1.0

val g = scalajs.js.Dynamic.global

g.fetch = g.require ("node-fetch")

g.require ("abortcontroller-polyfill/dist/polyfill-patch-fetch")
g.Headers = g.require ("fetch-headers")

26.2 Streaming

Streaming support is provided via Fet chMonixBackend. Note that streaming support on Firefox is hidden behind
a flag, see ReadableStream for more information.

To use, add the following dependency to your project:

"com.softwaremill.sttp" %%% "monix" % "1.7.2"

An example of streaming a response:

import com.softwaremill.sttp._
import com.softwaremill.sttp.impl.monix._

import java.nio.ByteBuffer
import monix.eval.Task
import monix.reactive.Observable

implicit val sttpBackend = FetchMonixBackend ()

val response: Task[Response[Observable [ByteBuffer]]] =
sttp
.post (uri"...")
.response (asStream[Observable [ByteBuffer]])
.send ()

Note: Currently no browsers support passing a stream as the request body. As such, using the Fet ch backend with
a streaming request will result in it being converted into an in-memory array before being sent. Response bodies are
returned as a “proper” stream.

62 Chapter 26. Fetch backend



https://developer.mozilla.org/en-US/docs/Web/API/ReadableStream

CHAPTER 27

Custom backends, logging, metrics

It is also entirely possible to write custom backends (if doing so, please consider contributing!) or wrap an existing
one. One can even write completely generic wrappers for any delegate backend, as each backend comes equipped with
a monad for the response type. This brings the possibility to map and £1atMap over responses.

Possible use-cases for wrapper-backend include:
* logging
e capturing metrics

* request signing (transforming the request before sending it to the delegate)

27.1 Request tagging

Each request contains a tags: Map[String, Any] map. This map can be used to tag the request with any
backend-specific information, and isn’t used in any way by sttp itself.

Tags can be added to a request using the def tag(k: String, v: Any) method, and read using the def
tag(k: String): Option[Any] method.

Backends, or backend wrappers can use tags e.g. for logging, passing a metric name, using different connection pools,
or even different delegate backends.

27.2 Backend wrappers and redirects

By default redirects are handled at a low level, using a wrapper around the main, concrete backend: each
of the backend factory methods, e.g. HttpURLConnectionBackend () returns a backend wrapped in
FollowRedirectsBackend.

This causes any further backend wrappers to handle a request which involves redirects as one whole, with-
out the intermediate requests. However, wrappers which collects metrics, implements tracing or handles re-
quest retries might want to handle every request in the redirect chain. This can be achieved by layering another

63



sttp Documentation, Release 1.0

FollowRedirectsBackend on top of the wrapper. Only the top-level follow redirects backend will handle redi-
rects, other follow redirect wrappers (at lower levels) will be disabled.

For example:

class MyWrapper [R[_], S] private (delegate: SttpBackend|[R, S])
extends SttpBackend[R, S] {

object MyWrapper {
def apply[R[_], S] (delegate: SttpBackend|[R, S]): SttpBackend[R, S] = {
// disables any other FollowRedirectsBackend-s further down the delegate chain
new FollowRedirectsBackend (new MyWrapper (delegate))

27.3 Example logging backend wrapper

Often it’s useful to setup system-wide logging for failed requests. This is possible using a backend wrapper. In this
example, we are using scala-1logging for the logging itself, but of course any logging library can be used:

import com.softwaremill.sttp.{MonadError, Request, Response, SttpBackend}
import com.typesafe.scalalogging.StrictLogging

class LoggingSttpBackend[R[_], S] (delegate: SttpBackend[R, S]) extends SttpBackend[R,
8]
with StrictLogging {

override def send[T] (request: Request [T, S]): R[Response[T]] = {
responseMonad.map (responseMonad.handleError (delegate.send (request)) {
case e: Exception =>
logger.error (s"Exception when sending request: Sre
responseMonad.error (e)
}) { response =>
if (response.isSuccess) {
logger.debug (s"For request: Sre

got response: $res

} else {
logger.warn (s"For request: Srequest got response: Sr ")
}
response
}

}
override def close(): Unit = delegate.close()
override def responseMonad: MonadError |[R] = delegate.responseMonad

Note that there are three possible outcomes of a request:

* an exception is thrown (handled with responseMonad.handleError), e.g. because of a connection error;
here, this is logged with level ERROR.

* the response completes normally, but the server returns a non-2xx response code. Here, this case is logged with
level WARN.

* the response completes normally with 2xx response code. Here, this case is logged with level DEBUG.

64 Chapter 27. Custom backends, logging, metrics




sttp Documentation, Release 1.0

It’s quite easy to customize this backend to your particular needs - just copy the code!

27.4 Example metrics backend wrapper

Below is an example on how to implement a backend wrapper, which sends metrics for completed requests and wraps
any Future-based backend:

// the metrics infrastructure
trait MetricsServer {
def reportDuration (name: String, duration: Long): Unit

class CloudMetricsServer extends MetricsServer {
override def reportDuration (name: String, duration: Long): Unit = 2?7

// the backend wrapper
class MetricWrapper[S] (delegate: SttpBackend|Future, S],
metrics: MetricsServer)
extends SttpBackend [Future, S] {

override def send[T] (request: Request [T, S]): Future[Response[T]] = ({
val start = System.currentTimeMillis ()

def report (metricSuffix: String): Unit = {
Al
)

val metricPrefix = request.tag("metric").getOrElse ("?")
val end = System.currentTimeMillis ()
metrics.reportDuration (metricPrefix + "-" + metricSuffix, end - start)

delegate.send(request) .andThen {

case Success (response) if response.is200 => report ("ok")
case Success (response) => report ("notok")
case Failure (t) => report ("exception")
}
}
override def close(): Unit = delegate.close()
override def responseMonad: MonadError [Future] = delegate.responseMonad

// example usage

implicit val backend = new MetricWrapper (
AkkaHttpBackend (),
new CloudMetricsServer ()

sttp
.get (uri"http://company.com/api/servicel")
.tag("metric", "servicel")
.send ()

27.4. Example metrics backend wrapper 65




sttp Documentation, Release 1.0

27.5 Example retrying backend wrapper

Handling retries is a complex problem when it comes to HTTP requests. When is a request retryable? There are a
couple of things to take into account:

* connection exceptions are generally good candidates for retries
¢ only idempotent HTTP methods (such as GET) could potentially be retried

» some HTTP status codes might also be retryable (e.g. 500 Internal Server Erroror 503 Service
Unavailable)

In some cases it’s possible to implement a generic retry mechanism; such a mechanism should take into account
logging, metrics, limiting the number of retries and a backoff mechanism. These mechanisms could be quite simple,
or involve e.g. retry budgets (see Finagle’s documentation on retries). In sttp, it’s possible to recover from errors using
the responseMonad. A starting point for a retrying backend could be:

import com.softwaremill.sttp.{MonadError, Request, Response, SttpBackend}

class RetryingBackend[R[_], S]
delegate: SttpBackend[R, S],

shouldRetry: (Request|[_, _], Either[Throwable, Response[_]]) => Boolean,

maxRetries: Int)

extends SttpBackend[R, S] {

override def send|[T] (request: Request [T, S]): R[Response([T]] = {
sendWithRetryCounter (request, 0)

private def sendWithRetryCounter|[T] (request: Request [T, S],
retries: Int): R[Response[T]] = {
val r = responseMonad.handleError (delegate.send (request)) {
case t if shouldRetry(request, Left(t)) && retries < maxRetries =>
sendWithRetryCounter (request, retries + 1)

responseMonad. flatMap (r) { resp =>
if (shouldRetry (request, Right (resp)) && retries < maxRetries) {
sendWithRetryCounter (request, retries + 1)
} else {

responseMonad.unit (resp)

override def close(): Unit = delegate.close()

override def responseMonad: MonadError [R] = delegate.responseMonad

Note that some backends also have built-in retry mechanisms, e.g. akka-http or OkHttp (see the builder’s
retryOnConnectionFailure method).

27.6 Example new backend

Implementing a new backend is made easy as the tests are published in the core jar file under the test s classifier.
Simply add the follow dependencies to your build. sbt:

66 Chapter 27. Custom backends, logging, metrics


https://twitter.github.io/finagle/guide/Clients.html#retries
https://doc.akka.io/docs/akka-http/current/scala/http/client-side/host-level.html#retrying-a-request
http://square.github.io/okhttp

sttp Documentation, Release 1.0

"com.softwaremill.sttp" %% "core" %
"com.typesafe.akka" %% "akka-http" % "10.1.1" % "test",

"ch.megard" %% "akka-http-cors"™ % "0.3.0" % "test",

"com.typesafe.akka" %% "akka-stream" % "2.5.12" % "test",

"org.scalatest" %% "scalatest" % "3.0.5" % "test"

S "1.7.2" % "test" classifier

"tests",

Implement your backend and extend the Ht t pTest class:

import com.softwaremill.sttp.SttpBackend
import com.softwaremill.sttp.testing. {ConvertToFuture,

class MyCustomBackendHttpTest extends HttpTest [Future] {

override implicit wval convertToFuture:

—future
override implicit lazy val backend: SttpBackend|[Future,

—MyCustomBackend ()

ConvertToFuture [Future] =

HttpTest}

Nothing]

ConvertToFuture.

= new_

You can find a more detailed example in the sttp-vertx repository.

27.6. Example new backend

67


https://github.com/guymers/sttp-vertx

sttp Documentation, Release 1.0

68 Chapter 27. Custom backends, logging, metrics



CHAPTER 28

Testing

If you need a stub backend for use in tests instead of a “real” backend (you probably don’t want to make HTTP calls
during unit tests), you can use the SttpBackendStub class. It allows specifying how the backend should respond
to requests matching given predicates.

You can also create a stub backend using akka-http routes.

28.1 Creating a stub backend

An empty backend stub can be created using the following ways:

* by using one of the factory methods SttpBackendStub.synchronous or SttpBackendStub.
asynchronousFuture, which return stubs which use the Id or standard Scala’s Fut ure response wrappers
without streaming support

* by explicitly giving the response wrapper monad and supported streams type, e.g.
SttpBackendStub[Task, Observable[ByteBuffer]] (TaskMonad)

e given an instance of a “real” backend, e.g. SttpBackendStub (HttpURLConnectionBackend())
or SttpBackendStub (AsyncHttpClientScalazBackend () ). The stub will then use the same re-
sponse wrapper and support the same type of streams as the given “real” backend.

* by specifying a fallback/delegate backend, see below

28.2 Specifying behavior

Behavior of the stub can be specified using a combination of the whenRequestMatches and thenRespond
methods:

implicit val testingBackend = SttpBackendStub.synchronous
.whenRequestMatches (_.uri.path.startsWith (List ("a", "b")))
.thenRespond ("Hello there!™)

(continues on next page)

69




sttp Documentation, Release 1.0

(continued from previous page)

.whenRequestMatches (_.method == Method.POST)
.thenRespondServerError ()

val responsel = sttp.get (uri"http://example.org/a/b/c") .send()
// responsel.body will be Right ("Hello there")

val response2 = sttp.post (uri"http://example.org/d/e") .send()
// responsel.code will be 500

It is also possible to match requests by partial function, returning a response. E.g.:

implicit val testingBackend = SttpBackendStub.synchronous
.whenRequestMatchesPartial ({
case r if r.uri.path.endsWith (List ("partiallO")) =>
Response.error ("Not found", 404)

case r if r.uri.path.endsWith (List ("partialAda")) =>
// additional verification of the request 1is possible
assert (r.body == StringBody ("z"))

Response.ok ("Ada")
})

val responsel = sttp.get (uri"http://example.org/partiall0") .send()
// responsel.body will be Right (10)

val response2 = sttp.post (uri"http://example.org/partialAda™) .send()
// responsel.body will be Right ("Ada")

This approach to testing has one caveat: the responses are not type-safe. That is, the stub backend cannot match on or
verify that the type of the response body matches the response body type requested.

Another way to specify the behaviour is passing response wrapped in the result monad to the stub. It is useful if you
need to test a scenario with a slow server, when the response should be not returned immediately, but after some time.
Example with Futures:

implicit val testingBackend = SttpBackendStub.asynchronousFuture.whenAnyRequest
.thenRespondWrapped (Future {
Thread.sleep (5000)
Response (Right ("OK"), 200, "", Nil, Nil)
})

val responseFuture = sttp.get (uri"http://example.org") .send()
// responseFuture will complete after 5 seconds with "OK" response

The returned response may also depend on the request:

implicit wval testingBackend = SttpBackendStub.synchronous.whenAnyRequest
.thenRespondWrapped (req =>
Response (Right ("OK, got request sent to ${req.uri.host}"), 200, "", Nil, Nil)

val response = sttp.get (uri"http://example.org") .send()
// response.body will be Right ("OK, got request sent to example.org")

You can define consecutive raw responses that will be served:

70 Chapter 28. Testing




sttp Documentation, Release 1.0

implicit wval testingBackend = SttpBackendStub.synchronous.whenAnyRequest

.thenRespondCyclic ("first", "second", "third")
sttp.get (uri"http://example.org") .send // Right ("OK, first")
sttp.get (uri"http://example.org") .send // Right ("OK, second")

( ) ()

( ) ()
sttp.get (uri"http://example.org") .send () // Right ("OK, third")
sttp.get (uri"http://example.org") .send () // Right ("OK, first")

Or multiple Response instances:

implicit wval testingBackend = SttpBackendStub.synchronous.whenAnyRequest
.thenRespondCyclicResponses (
Response.ok[String] ("first"),

Response.error [String] ("error", 500, "Something went wrong")
)
sttp.get (uri"http://example.org") .send () // code will be 200
sttp.get (uri"http://example.org") .send () // code will be 500
sttp.get (uri"http://example.org") .send () // code will be 200

28.3 Simulating exceptions

If you want to simulate an exception being thrown by a backend, e.g. a socket timeout exception, you can do so by
throwing the appropriate exception instead of the response, e.g.:

implicit wval testingBackend = SttpBackendStub.synchronous
.whenRequestMatches (_ => true)
.thenRespond (throw new TimeoutException|())

28.4 Adjusting the response body type

If the type of the response body returned by the stub’s rules (as specified using the . whenXxx methods) doesn’t match
what was specified in the request, the stub will attempt to convert the body to the desired type. This might be useful
when:

* testing code which maps a basic response body to a custom type, e.g. mapping a raw json string using a decoder
to a domain type

* reading a classpath resource (which results in an InputStream) and requesting a response of e.g. type
String

The following conversions are supported:
 anything to () (unit), when the response is ignored
e InputStreamand Array[Byte] to String
e InputStreamand StringtoArray [Byte]

e InputStream, Stringand Array [Byte] to custom types through mapped response specifications

28.3. Simulating exceptions 71




sttp Documentation, Release 1.0

28.5 Example: returning JSON

For example, if you want to return a JSON response, simply use .withResponse(String) as below::

implicit val testingBackend = SttpBackendStub.synchronous

.whenRequestMatches (_ => true)
.thenRespond ("" {"username": "john", "age": 65 } """)
def parseUserdJson(a: Array[Byte]): User =

val response = sttp.get (uri"http://example.com")
.response (asByteArray.map (parseUserJdson))
.send ()

In the example above, the stub’s rules specify that a response with a St ring-body should be returned for any request;
the request, on the other hand, specifies that response body should be parsed from a byte array to a custom User type.
These type don’t match, so the SttpBackendStub will in this case convert the body to the desired type.

Note that no conversions will be attempted for streaming response bodies.

28.6 Example: returning a file

If you want to return a file and have a response handler set up like this:

val destination = new File ("path/to/file.ext")
sttp.get (uri"http://example.com") .response (asFile (destination))

Then set up the mock like this:

val fileResponseHandle = new File ("path/to/file.ext")
SttpBackendStub. synchronous

.whenRequestMatches (_ => true)

.thenRespond (fileResponseHandle)

the File set up in the stub will be returned as though it was the File set up as destination in the response
handler above. This means that the file from fileResponseHandle is not written to destination.

If you actually want a file to be written you can set up the stub like this:

val sourceFile = new File("path/to/file.ext")
val destinationFile = new File ("path/to/file.ext")
SttpBackendStub. synchronous
.whenRequestMatches (_ => true)
.thenRespondWrapped { _ =>
FileUtils.copyFile (sourceFile, destinationFile) // org.apache.commons.io
IO (Response (Right (destinationFile, 200, ""))

28.7 Delegating to another backend

It is also possible to create a stub backend which delegates calls to another (possibly “real””) backend if none of the
specified predicates match a request. This can be useful during development, to partially stub a yet incomplete API
with which we integrate:

72 Chapter 28. Testing




sttp Documentation, Release 1.0

implicit wval testingBackend =
SttpBackendStub.withFallback (HttpURLConnectionBackend())
.whenRequestMatches (_.uri.path.startsWith (List ("a")))
.thenRespond ("I'm a STUB!")

val responsel = sttp.get (uri"http://api.internal/a") .send()
// responsel.body will be Right ("I'm a STUB")

val response2 = sttp.post (uri"http://api.internal/b") .send()
// response2 will be whatever a "real" network call to api.internal/b returns

28.7. Delegating to another backend 73




sttp Documentation, Release 1.0

74 Chapter 28. Testing



CHAPTER 29

Timeouts

sttp supports read and connection timeouts:
» Connection timeout - can be set globally (30 seconds by default)
* Read timeout - can be set per request (1 minute by default)

How to use:

import com.softwaremill.sttp._
import scala.concurrent.duration._

// all backends provide a constructor that allows to specify backend options
implicit val backend = HttpURLConnectionBackend (

options = SttpBackendOptions.connectionTimeout (1.minute))
sttp
.get (uri"...")
.readTimeout (5.minutes) // or Duration.Inf to turn read timeout off
.send ()

75




sttp Documentation, Release 1.0

76 Chapter 29. Timeouts



cHAPTER 30

SSL

SSL handling can be customized (or disabled) when creating a backend and is backend-specific.

Depending on the underlying backend’s client, you can customize SSL settings as follows:

HttpUrlConnectionBackend: when creating the backend, specify the customizeConnection:
HttpURLConnection => Unit parameter, and set the hostname verifier & SSL socket factory as required

akka-http: when creating the backend, specify the customHttpsContext:
Option[HttpsConnectionContext] parameter. See akka-http docs

async-http-client: create a custom client and use the set SSLContext method

OKkHottp: create a custom client modifying the SSL settings as described on the wiki

77


http://doc.akka.io/docs/akka-http/current/scala/http/server-side/server-https-support.html
https://github.com/square/okhttp/wiki/HTTPS

sttp Documentation, Release 1.0

78 Chapter 30. SSL



CHAPTER 31

Proxy support

sttp library by default checks for your System proxy properties (docs):
Following settings are checked:
1. socksProxyHost and socksProxyPort (default: 1080)

2. http.proxyHost and http.proxyPort (default: 80) 2. https.proxyHost and https.proxyPort
(default: 443)

Settings are loaded in given order and the first existing value is being used.

Otherwise, proxy values can be specified manually when creating a backend:

import com.softwaremill.sttp._

implicit val backend = HttpURLConnectionBackend (
options = SttpBackendOptions.httpProxy ("some.host", 8080))

sttp
.get (uri"...")
.send () // uses the proxy

Or in case your proxy requires authentication (supported by the JVM backends):

SttpBackendOptions.httpProxy ("some.host", 8080, "username", "password")

79



https://docs.oracle.com/javase/8/docs/api/java/net/doc-files/net-properties.html

sttp Documentation, Release 1.0

80 Chapter 31. Proxy support



CHAPTER 32

Redirects

By default, sttp follows redirects.

If you’d like to disable following redirects, use the followRedirects method:

sttp.followRedirects (false)

If a request has been redirected, the history of all followed redirects is accessible through the response.history
list. The first response (oldest) comes first. The body of each response will be a Left (message) (as the status code
is non-2xx), where the message is whatever the server returned as the response body.

32.1 Redirecting POST requests

If a POST or PUT request is redirected, by default it will be sent unchanged to the new address, that is using the
original body and method. However, most browsers and some clients issue a GET request in such case, without the
body.

To enable this behavior, use the redirect ToGet method:

sttp.redirectToGet (true)

Note that this only affects 301 Moved Permanently and 302 Found redirects. 303 See Other redirects
are always converted, while 307 Temporary Redirect and 308 Permanent Redirect never.

81



sttp Documentation, Release 1.0

82 Chapter 32. Redirects



CHAPTER 33

JSON

Adding support for JSON (or other format) bodies in requests/responses is a matter of providing a body serializer
and/or a response body specification. Both are quite straightforward to implement, so integrating with your favorite
JSON library shouldn’t be a problem. However, there are some integrations available out-of-the-box.

Also read about handling non 2xx responses if you need to unmarshal error responses.

33.1 Circe

JSON encoding of bodies and decoding of responses can be handled using Circe by the circe module. To use add
the following dependency to your project:

"com.softwaremill.sttp" %% "circe" % "1.7.2"

This module adds a method to the request and a function that can be given to a request to decode the response to a
specific object:

import com.softwaremill.sttp._
import com.softwaremill.sttp.circe._

implicit val backend = HttpURLConnectionBackend ()

// Assume that there is an implicit circe encoder in scope
// for the request Payload, and a decoder for the MyResponse
val requestPayload: Payload = 7?7

val response: Response [Either[DeserializationError[io.circe.Error], MyResponse]]| =
sttp
.post (uri"...")
.body (requestPayload)
.response (asJdson [MyResponse] )
.send ()

83



https://circe.github.io/circe/

sttp Documentation, Release 1.0

33.2 Jsonds

To encode and decode json using json4s, add the following dependency to your project:

o

"com.softwaremill.sttp" %% "Jjsonds" % "1.7.2"

) o

"org.Jjsonds" %% "Jjsond4ds-native" % "3.6.0"

Note that in this example we are using the jsonds-native backend, but you can use any other json4s backend.

Using this module it is possible to set request bodies and read response bodies as case classes, using the implicitly
available org. json4s.Formats (which defaults to org. jsonds.DefaultFormats), and by bringing an
implicit org. json4s.Serialization into scope.

Usage example:

import com.softwaremill.sttp._
import com.softwaremill.sttp. jsonds._

implicit val backend = HttpURLConnectionBackend ()

case class Payload(...)
case class MyResponse(...)

val requestPayload: Payload = Payload(...)
implicit val serialization = org.jsonds.native.Serialization

val response: Response [MyResponse]| =
sttp
.post (uri"...")
.body (requestPayload)
.response (asdson [MyResponse] )
.send ()

33.3 spray-json

To encode and decode JSON using spray-json, add the following dependency to your project:

o

"com.softwaremill.sttp" %% "spray-json" % "1.7.2"

Using this module it is possible to set request bodies and read response bodies as your custom types, using the im-
plicitly available instances of spray. json.JsonWriter / spray. json.JsonReader or spray. json.
JsonFormat.

Usage example:

import com.softwaremill.sttp._
import com.softwaremill.sttp.sprayJdson._
import spray.json._

implicit val backend = HttpURLConnectionBackend ()
case class Payload(...)

object Payload {
implicit val jsonFormat: RootJsonFormat [Payload] =

(continues on next page)

84 Chapter 33. JSON



https://github.com/spray/spray-json

sttp Documentation, Release 1.0

(continued from previous page)

case class MyResponse(...)

object MyResponse {
implicit val jsonFormat: RootJsonFormat [MyResponse] =

val requestPayload: Payload = Payload(...)
val response: Response [MyResponse]| =
sttp
.post (uri"...")
.body (requestPayload)
.response (asJson [MyResponse] )
.send ()

33.4 play-json

To encode and decode JSON using play-json, add the following dependency to your project:

’"com.softwaremill.sttp" %% "play—json" % "1.7.2"

To use, add an import: import com.softwaremill.sttp.playJson._.

33.4. play-json

85


https://www.playframework.com

sttp Documentation, Release 1.0

86 Chapter 33. JSON



CHAPTER 34

Other Scala HTTP clients

scalaj

akka-http client
dispatch

play ws
fs2-http

http4s
Gigahorse
RosHTTP

Requests-Scala

Also, check the comparison by Marco Firrincieli on how to implement a simple request using a number of Scala HTTP
libraries.

87


https://github.com/scalaj/scalaj-http
http://doc.akka.io/docs/akka-http/current/scala/http/client-side/index.html
http://dispatch.databinder.net/Dispatch.html
https://github.com/playframework/play-ws
https://github.com/Spinoco/fs2-http
http://http4s.org/v0.17/client/
http://eed3si9n.com/gigahorse/
https://github.com/hmil/RosHTTP
https://github.com/lihaoyi/requests-scala
https://github.com/mfirry/scala-http-clients

sttp Documentation, Release 1.0

88 Chapter 34. Other Scala HTTP clients



CHAPTER 35

Credits

Adam Warski

Tomasz Szymarnski

Omar Alejandro Mainegra Sarduy
Bjgrn Madsen

Piotr Buda

Piotr Gabara

Gabriele Petronella

Pawet Stawicki

Michat Siatkowski

Marcin Kubala

89


https://github.com/adamw
https://github.com/szimano
https://github.com/omainegra
https://github.com/aeons
https://github.com/pbuda
https://github.com/bhop
https://github.com/gabro
https://github.com/amorfis
https://github.com/atais
https://github.com/mkubala

	Quickstart
	Using sbt
	Using Ammonite
	Imports

	Goals of the project
	Non-goals of the project
	How is sttp different from other libraries?

	Community
	Usage examples
	POST a form using the synchronous backend
	GET and parse JSON using the akka-http backend and json4s
	Test an endpoint requiring multiple parameters

	HTTP Constants
	Request definition basics
	Sending a request
	Starting requests
	Debugging requests

	URIs
	URI interpolator
	Optional values
	Maps and sequences
	Special cases
	All features combined

	Headers
	Common headers

	Cookies
	Cookies from responses

	Authentication
	Setting the request body
	Text data
	Binary data
	Uploading files
	Form data
	Custom body serializers

	Multipart requests
	Customising part meta-data

	Streaming
	The type of request definitions
	Responses
	Response code
	Response headers
	Obtaining the response body

	Response body specification
	Basic response specifications
	Handling non 2xx responses
	Custom body deserializers
	Streaming

	Supported backends
	Starting & cleaning up
	HttpURLConnection backend
	akka-http backend
	Testing

	async-http-client backend
	Streaming using Monix
	Streaming using fs2

	OkHttp backend
	Http4s backend
	brave backend
	Prometheus backend
	Fetch backend
	Node.js
	Streaming

	Custom backends, logging, metrics
	Request tagging
	Backend wrappers and redirects
	Example logging backend wrapper
	Example metrics backend wrapper
	Example retrying backend wrapper
	Example new backend

	Testing
	Creating a stub backend
	Specifying behavior
	Simulating exceptions
	Adjusting the response body type
	Example: returning JSON
	Example: returning a file
	Delegating to another backend

	Timeouts
	SSL
	Proxy support
	Redirects
	Redirecting POST requests

	JSON
	Circe
	Json4s
	spray-json
	play-json

	Other Scala HTTP clients
	Credits

